Schwann cells … and tinnitus

NB there are other ways to treat Schwann dysfunctions then https://neurogenica.com/ see below! Their marketing is suspect, overdoing. Why? On the other hand it might be … interesting after very critical analyzes

NB many pictures and translations will be inserted

Quotation from below: ”Schwannomas of the head and neck are a fairly common occurrence and can be found incidentally in 3–4% of patients at autopsy.[4] Most common of these is a vestibular schwannoma, a tumor of the vestibulocochlear nerve that may lead to tinnitus and hearing loss on the affected side. Outside the cranial nerves, schwannomas may present on the flexor surfaces of the limbs.”

Information:
https://en.wikipedia.org/wiki/Schwann_cell
Schwann cells or neurolemmocytes (named after German physiologist Theodor Schwann) are the principal glia of the peripheral nervous system (PNS). Glial cells function to support neurons and in the PNS, also include satellite cells, olfactory ensheathing cells, enteric glia and glia that reside at sensory nerve endings, such as the Pacinian corpuscle. The two types of Schwann cells are myelinating and nonmyelinating.[1] Myelinating Schwann cells wrap around axons of motor and sensory neurons to form the myelin sheath. The Schwann cell promoter is present in the downstream region of the human dystrophin gene that gives shortened transcript that are again synthesized in a tissue-specific manner.

During the development of the PNS, the regulatory mechanisms of myelination are controlled by feedforward interaction of specific genes, influencing transcriptional cascades and shaping the morphology of the myelinated nerve fibers.[2]

Schwann cells are involved in many important aspects of peripheral nerve biology – the conduction of nervous impulses along axons, nerve development and regeneration, trophic support for neurons, production of the nerve extracellular matrix, modulation of neuromuscular synaptic activity, and presentation of antigens to T-lymphocytes.

Charcot–Marie–Tooth disease, Guillain–Barré syndrome (acute inflammatory demyelinating polyradiculopathy type), schwannomatosis, chronic inflammatory demyelinating polyneuropathy, and leprosy are all neuropathies involving Schwann cells.

Schwann cells wrapped around an axon

 

Structure
Schwann cells are a variety of glial cells that keep peripheral nerve fibres (both myelinated and unmyelinated) alive. In myelinated axons, Schwann cells form the myelin sheath. The sheath is not continuous. Individual myelinating Schwann cells cover about 1 mm of an axon[3] – equating to about 1000 Schwann cells along a 1-m length of the axon. The gaps between adjacent Schwann cells are called nodes of Ranvier.

9-O-Acetyl GD3 ganglioside is an acetylated glycolipid which is found in the cell membranes of many types of vertebrate cells. During peripheral nerve regeneration, 9-O-acetyl GD3 is expressed by Schwann cells.[4]

Function

The vertebrate nervous system relies on the myelin sheath for insulation and as a method of decreasing membrane capacitance in the axon. The action potential jumps from node to node, in a process called saltatory conduction, which can increase conduction velocity up to 10 times, without an increase in axonal diameter. In this sense, Schwann cells are the PNS’s analogues of the central nervous system’s oligodendrocytes. However, unlike oligodendrocytes, each myelinating Schwann cell provides insulation to only one axon (see image). This arrangement permits saltatory conduction of action potentials with repropagation at the nodes of Ranvier. In this way, myelination greatly increases speed of conduction and saves energy.[5]

Nonmyelinating Schwann cells are involved in maintenance of axons and are crucial for neuronal survival. Some group around smaller axons (External image here) and form Remak bundles.

Myelinating Schwann cells begin to form the myelin sheath in mammals during fetal development and work by spiraling around the axon, sometimes with as many as 100 revolutions. A well-developed Schwann cell is shaped like a rolled-up sheet of paper, with layers of myelin between each coil. The inner layers of the wrapping, which are predominantly membrane material, form the myelin sheath, while the outermost layer of nucleated cytoplasm forms the neurilemma. Only a small volume of residual cytoplasm allows communication between the inner and outer layers. This is seen histologically as the Schmidt-Lantermann incisure.

Regeneration

Schwann cells are known for their roles in supporting nerve regeneration.[6] Nerves in the PNS consist of many axons myelinated by Schwann cells. If damage occurs to a nerve, the Schwann cells aid in digestion of its axons (phagocytosis). Following this process, the Schwann cells can guide regeneration by forming a type of tunnel that leads toward the target neurons. This tunnel is known as band of Büngner, a guidance track for the regenerating axons, which behaves like an endoneural tube. The stump of the damaged axon is able to sprout, and those sprouts that grow through the Schwann-cell ”tunnel” do so at the rate around 1 mm/day in good conditions. The rate of regeneration decreases with time. Successful axons can, therefore, reconnect with the muscles or organs they previously controlled with the help of Schwann cells, but specificity is not maintained and errors are frequent, especially when long distances are involved.[7] Because of their ability to impact regeneration of axons, Schwann cells have been connected to preferential motor reinnervation, as well. If Schwann cells are prevented from associating with axons, the axons die. Regenerating axons will not reach any target unless Schwann cells are there to support them and guide them. They have been shown to be in advance of the growth cones.

Schwann cells are essential for the maintenance of healthy axons. They produce a variety of factors, including neurotrophins, and also transfer essential molecules across to axons

 

https://en.wikipedia.org/wiki/Schwannoma
A schwannoma (or neurilemmoma) is a usually benign nerve sheath tumor composed of Schwann cells, which normally produce the insulating myelin sheath covering peripheral nerves.

Schwannomas are homogeneous tumors, consisting only of Schwann cells. The tumor cells always stay on the outside of the nerve, but the tumor itself may either push the nerve aside and/or up against a bony structure (thereby possibly causing damage). Schwannomas are relatively slow-growing. For reasons not yet understood, schwannomas are mostly benign and less than 1% become malignant, degenerating into a form of cancer known as neurofibrosarcoma. These masses are generally contained within a capsule, so surgical removal is often successful.[3]

Schwannomas can be associated with neurofibromatosis type II, which may be due to a loss-of-function mutation in the protein merlin.[4] They are universally S-100 positive, which is a marker for cells of neural crest cell origin.

Schwannomas of the head and neck are a fairly common occurrence and can be found incidentally in 3–4% of patients at autopsy.[4] Most common of these is a vestibular schwannoma, a tumor of the vestibulocochlear nerve that may lead to tinnitus and hearing loss on the affected side. Outside the cranial nerves, schwannomas may present on the flexor surfaces of the limbs. Rare occurrences of these tumors in the penis have been documented in the literature.[5]

Verocay bodies are seen histologically in schwannomas.

 

Schwanncell – Fysiopedi
https://www.physio-pedia.com/Schwann_Cell
Schwann cells (SCs) are a type of glial cell that surrounds neurons, keeping them alive and sometimes covering them with a myelin sheath, and are the major glial cell type in the peripheral nervous system. They play essential roles in the development, maintenance, function, and regeneration of peripheral nerves. [1]

Myelin is a fatty substance produced by glial cells that is non-conductive. Myelinating a nerve cell results in better conduction of nerve impulses. It has been shown in studies that myelinated nerve cells can transfer signals up to 10X faster than unsheathed nerves. [2]

 

8 Microtubules 12 Nucleus (Schwann cell) 16 Axon 20 Microfilaments 21 Myelin sheath (Schwann cell) 22 Ranvier knot

 

Schwann cells: Origins and role in axonal maintenance and regeneration – ScienceDirect
https://www.sciencedirect.com/science/article/abs/pii/S1357272506001634

 

Schwann-celler: Ursprung och roll i axonal underhåll och regenerering
https://www.sciencedirect.com/science/article/abs/pii/S1357272506001634
Etikal upp

Schwann-cellen spelar en viktig roll för att upprätthålla det perifera nervsystemet (PNS). Schwann-celler härrör från neurala krönceller och finns i två typer antingen myelinerande eller icke-myelinerande Schwann-celler. Båda spelar en avgörande roll i underhåll och regenerering av axoner av neuronerna i PNS. Regleringen av Schwann-celler medieras ett antal olika neurotrofa faktorer som signalerar till transkriptionsfaktorer som Krox-20, okt-6 och Sox-10. Schwann-celler påverkas av ett antal demyeliniserande sjukdomar, såsom Charcot-Marie-Tooth sjukdom och Guillain-Barrés syndrom, infekterat av Mycobacterium leprae för att orsaka spetälska och är ansvariga för de tumörer som ses hos patienter med neurofibromatos typ 1 och neurofibromatos typ 2. Schwann-cellen är under utredning som ett terapeutiskt medel för demyelinerande sjukdomar och ryggmärgsskador. Ytterligare forskning om Schwann-celler kommer att hjälpa till att förstå dessa sjukdomar och kanske leda till nya behandlingar.

Inledning

Under mitten av artonhundratalet under utredningen av nervsystemet upptäckte Theodore Schwann, medgrundare av cellteorin, att vissa celler är lindade runt axonerna i det perifera nervsystemet. Vad Schwann upptäckte då kallas nu ”Schwann-cellen”. Medan neuroner utgör grunden för nervsystemet, är gliaceller som Schwann-celler väsentliga för neuroners överlevnad och funktion. Schwann-celler hjälper till att myelinera axoner, riktningsvägledning av neuroner och eliminera cellulärt skräp. Schwann-celler skiljer sig från neuroner eftersom de saknar förmågan att överföra synaptiska meddelanden och kan dela sig på obestämd tid under hela livet. Deras motsvarigheter i CNS är oligodendrocyter. Till skillnad från oligodendrocyter går Schwann-celler snabbt in mitos efter förekomsten av skada som tyder på att de kan vara bättre för behandling av demyeliniserande störningar och ryggmärgsskador.

Avsnitt snippets

Ursprung och plasticitet

De flesta av Schwann-cellerna härrör tidigt i embryonal utveckling från neurala krön, en liten övergående population av celler som bryter sig bort från neuralröret när det stänger (Fig. 1) (Le Douarin, 1986). Crestcellen går igenom två steg och utvecklas först till en prekursorcell, som följaktligen omvandlas till en omogen Schwann-cell tills födseln (Jessen et al., 1994). Efter födseln blir de omogna cellerna myelinerande Schwann-celler eller icke-myelinerande Schwann-celler. Den omogna

Funktion

En av de viktigaste funktionerna i Schwann-cellen är att myelinetera PNS. Myelin, som är ett fettlager som isolerar axon, hjälper till att öka den saltatoriserade ledningen av neuronen. En myelinating Schwann-cell sveper runt en enda axon. Myelination förekommer i större diameter axoner (≳1 μm), medan en process som kallas enshotement förekommer på mindre diameter axoner där en enda cell sveper runt flera små, unmyelinerade axoner som skiljer dem med ett tunt lager av

Associerade patologier

De patologier som är förknippade med Schwann-celler kan delas in i skaderespons, demyelinerande störningar och tumörstörningar. Efter att en skada inträffar i det perifera nervsystemet tenderar det att finnas störningar i konduktansen av neuronala signaler på grund av axonal skada. En sådan skada åtföljs av ett inflammationssvar av Schwann-celler. Schwann-cellen hjälper till att fagocytisera den skadade änden av axon och bildar sedan regenereringsröret av axon som är ansluten till cellen

 

Schwanncellen – en översikt | ScienceDirect-ämnen

https://www.sciencedirect.com/topics/neuroscience/schwann-cell
The uniqueness of being a neurotrophin receptor

Schwann cells are another glial cell type that display an elevated level of p75 expression, most prominently after nerve lesion or removal of axonal contact. Among the functions attributed to p75 signaling in Schwann cells are migration [27] and cell viability. Schwann cells can exhibit p75-dependent apoptosis [28•] but can be influenced by p75-mediated survival signals under other circumstances [29•].

 

hiPSC-deriverade Schwann-cellsprekursorer | Anatomisk

https://www.anatomic.com/realscp

 + 2 bilder/dagar till (7 och 14) snabb växande

 

Vi har snabbt genererat Schwann-cellprekursorer (SCP) från humaninducerade pluripotenta stamceller (hiPSC) på bara 9 dagar, som erbjuder en lovande modell för att studera sjukdomar som diabetisk neuropati och Charcot-Marie-Tooth syndrom. Dessa SCP, när de är co-cultureed med våra hiPSC-härledda sensoriska och motoriska neuroner, anpassar sig inom en vecka. Myeliniseringsmarkörer uttrycks när SCP-grupperna mognar och valideras ytterligare av transmissionselektronmikroskopi. Vår modell möjliggör screening med verktygsföreningar och funktionell analys med hjälp av multi-elektrode-matriser, vilket främjar studien av perifera nervsystemsjukdomar.

  • 500K per injektionsflaska CAT#4020M1-500K

Komparativ PCA-analys av RealSCP och primära Schwann-cellpopulationer

Bulk RNA-sekvensering av RealSCP-populationen genomfördes och jämfördes med flera publicerade dataset, inklusive andra hiPSC-härledda Schwann-celler och primära Schwann-cellpopulationer. Data indikerar totala dagar in vitro för varje celltyp. Huvudkomponentanalys (PCA) visar att RealSCP-populationen kluster nära med primära humana Schwann-cellsdataset vid båda dag 9 in vitro (0 dagars mognad) och dag 16 (7 dagars mognad). in vitro (7 dagar av mognad), markerad i rött.

Bevisat i ett antal analyser

Vi har utfört omfattande analysutveckling för ett antal tekniker så att dina första experiment kommer att fungera smidigt. Utan behov av omfattande optimering kan forskare fokusera på upptäckt och innovation


Schwann cell treatment of dysfunctions

Schwann cell autotransplantation for the treatment of peripheral nerve injury

https://www.sciencedirect.com/science/article/abs/pii/S0024320524007197
Abstract

Peripheral nerve injury occurs in a relatively large proportion of trauma patients, in whom it generally results in severe functional impairment and permanent disability. At present, however, there are no effective treatments available. Studies have shown that Schwann cells play an indispensable role in removing myelin debris and guiding axonal regeneration, and transplantation using autologous Schwann cells has shown good efficacy for patients with peripheral nerve injury. In recent years, Schwann cell autologous transplantation therapy has become an area of intensive research and is anticipated to provide a new strategy for the clinical treatment of peripheral nerve injury. In this article, we review the rationale for selecting Schwann cell autotransplantation therapy and the latest progress in key aspects of cell transplantation and clinical efficacy, and also summarize the future directions of research on this therapy. All of the above provide a strong basis for the further improvement and clinical promotion of this therapy.

Graphical abstract

 

B Complex – The most effective combination for treating damaged nerves.
https://www.neurobion.com/en-in/nerve-health/b-vitamins/b1-b6-b12-vitamins-for-healthy-nervous-system
B vitamins like B12, B6, B3, B1 are essential for nerve health. These vitamins can help with the healing of nerve damage and relieve nerve damage symptoms like numbness and tingling—this is why they are called ’neurotropic’ vitamins.

B vitamins like B12, B6, B3, B1 are essential for nerve health. These vitamins can help with the healing of nerve damage and relieve nerve damage symptoms like numbness and tingling—this is why they are called ‘neurotropic’ vitamins.

Each of the B vitamins has its own special role in nerve health, but they also work in synergy together—like a close-knit team—to repair damaged nerves and keep the nervous system healthy and functioning. Research suggests that—because each of the B vitamins has its own special part to play in nerve health—taking a complex of B vitamins can be even more beneficial than taking an individual supplement.

Learn more about the three essential neurotropic vitamins B1, B6 and B12, how they work together to treat nerve damage and protect your nervous system, and who can benefit from taking a vitamin B complex.¹


7 Foods That May Heal Nerve Damage
https://www.spinejointnj.com/7-foods-that-may-heal-nerve-damage/

  • Leafy Greens: Your Nerve’s Best Friend. …
  • Fatty Fish: Omega-3 Boost for Nerve Regeneration. …
  • Nuts and Seeds: The Power of Vitamin E. …
  • Avocados: Rich in Healthy Fats and Potassium. …
  • Turmeric: Nature’s Anti-Inflammatory Spice. …
  • Dark Chocolate: Indulge for Nerve Health.

Fler objekt …


Models and methods to study Schwann cells
https://pmc.ncbi.nlm.nih.gov/articles/PMC9558160/
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non‐myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age‐derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.

Svenska
Schwann-celler (SC) är grundläggande komponenter i det perifera nervsystemet (PNS) hos alla ryggradsdjur och spelar viktiga roller i utveckling, underhåll, funktion och regenerering av perifera nerver. Det finns distinkta populationer av SC inklusive: (1) myeliniserande SC som omsluter axoner av ett specialiserat plasmamembran, kallat myelin, vilket förbättrar ledningen av elektriska impulser; (2) icke-myeliniserande SCs, inklusive Remak SCs, som omsluter buntar av flera axoner av liten kaliber, och perysinaptiska SC (PSC), associerade med motoriska axonterminaler vid den neuromuskulära förbindelsen (NMJ). Alla typer av subkretionsskador bidrar till PNS-regenerering genom slående morfologiska och funktionella förändringar som svar på nervskada, påverkas vid perifera neuropatier och uppvisar abnormiteter och en minskad plasticitet under åldrandet. Därför är metodologiska tillvägagångssätt för att studera och manipulera SC vid fysiologiska och patofysiologiska tillstånd avgörande för att utöka den nuvarande kunskapen om SC-biologi och för att utforma nya terapeutiska strategier för att motverka neurodegenerativa tillstånd och åldershärledd denervering. Vi presenterar här en uppdaterad översikt över traditionella och framväxande metoder för studier av SC för forskare som närmar sig detta forskningsområde.

Different types of Schwann cells present in peripheral nerves. (a) myelinating Schwann Cells spirally wrap myelin membranes around motor neurons innervating the muscle fiber and some sensory neurons; (b) Remak Schwann Cells are non‐myelinating cells that enclose thinner axons such as those of sensory C fibers and (c) Perisynaptic Schwann cells, also known as terminal Schwann Cells cover the motor axon terminal at the NMJ

Perisynaptic Schwann cells cover motor axon terminal at the Neuromuscular junction (NMJ). The NMJ is a tripartite system formed by the motor axon terminal, the muscle fiber, and the non‐myelinating Perisynaptic Schwann cells (PSCs). A fourth key component is the Basal lamina, a complex extracellular matrix that separates the axon terminal from the muscle fiber, includes PSCs and is contiguous with the extracellular matrix (ECM) that surround myelinating SCs. No extracellular matrix is juxtaposed between PSCs and the nerve terminal

 

Overview of the methods currently available for the study of axonal Schwann cells (SCs) and Perisynaptic Schwann Cells (PSCs). Primary cultures represent an established method and have long been used for the study of basic cellular mechanisms of SCs also thanks to a progressive refinement of isolation and culturing protocols. Unfortunately, no methods are currently available to culture PSCs. Microscopy and omics techniques are instead employed for both the study of SCs and PSCs in physiological and pathophysiological conditions. New methodologies such as Laser capture microdissection or FACS‐sorting techniques, associated with omics analysis, can be undertaken to study the molecular profiles of both SCs and PSCs